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A variational problem is considered of constructing the generatrix of a plane or 

axisymmetric body guaranteeing the minimum wave drag in an inhomogeneous 
(nonisentropic and nonisoenergetic) supersonic flow of an ideal gas (inviscid and 
non-heat-conducting) in the case when the domain of determinacy of the un- 

known contour contains a zone of sharp variation in the values of parameters 
which are retained (in the absence of jumps) along the streamline, the parame- 
ters being the entropy and the stagnation enthalpy. In the limit the zone dege- 
nerates to a tangential discontinuity. The investigation is limited to the confi- 

gurations (e. g. nozzles or the stern parts of the bodies) for which no shock waves 
(this includes the bow shock) exist in the region under investigation. It is estab- 

lished that the solution [l, 21 obtained earlier for inhomogeneous flows and 
yielding a smooth optimal countour (without internal corner points) cannot be 
realized in such cases and must be replaced by a solution in which the generatrix 
of the optimal body contains at least one internal corner point. Since the me- 
thod of passing to the control contour utilized in [l, 21 cannot be applied to the 

study of such configurations, the necessary extremal conditions determining the 
form of the optimal generatrix must be obtained using the general method of 
Lagrange mulipliers in the form developed in [3 - 51. The conditions of optimal- 
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ity obtained are used to derive a numerical algorithm, and examples of the opti- 
mal generatrices of plane bodies are given for the case of a flow with a tangen- 
tial discontinuity. 

1. We consider the problem of constructing a generatrix ag of a plane (v = 0) 
or axisymmetric (v = 1) body, guaranteeing a minimum wave drag in a supersonic 

flow of an ideal gas. Let the gas flow from left to right and let the axes of a rectangular 
coordinate system ~9 which, in the axisymmetric case, lies in the meridional plane, be 
placed so that the initial point a of the segment of the generatrix sought lies on the y- 
axis, as shown in Fig. 1 (for v = 1 the z-axis is the axis of symmetry). The geometri- 

cal characteristics which are assumed given are, in addition to the coordinates of the 

point a, the maximum allowable length X of the body under consideration and yg 
which is the value of the ordinate of the end point 

c 
of the contour (here and in the following the sub- 
scripts a, b, g, . . . indicate parameters at the 
corresponding points). Since the optimal contour 

is limited in length, it may contain the butt end 
bg which is the part of the extremal edge at which 
2 = X, and the allowed variations 6x < 0. 
The butt end is not exposed to the gas flow and the 
pressure p+ acting on it will be assumed as a known 

Fig. 1 

z constant independent of the form of the contour 

sought. 
In the general case the direction of the tangent 

to the contour to the right of the point u does not necessarily agree with the direction 
of the velocity vector of the free supersonic stream on the left of this point. Therefore 

the flow past the contour ag is accompanied by formation of either a fan of expansion 
waves originating at the point a, or an attached or detached shock wave. We shall res- 

trict ourselves to the first possibility which corresponds to a flow e. g. past the afterbody 

section, past the upper part of the profile at a sufficiently large angle of attack, or past 
a nozzle contour (the last case will be considered separately, since here it is expedient 
to conduct the investigation in the upper semiplane where the orientation of the contour 
ag is different from that shown in Fig. 1). In this case the flow parameters at the char- 
acteristic UC which forms the left boundary of the initial expansion fan, can be regarded 

as known functions of 9, where $ is the stream function defined by the condition qa= 
0 and the equation 

d$ = cyp (udy - vdz) (1.1) 

Here p is the density and c is a normalizing constant chosen arbitrarily, while ZL and 
u are the projections of the velocity vector on the x and y axes. Equation (1.1) con- 

nects the x, y and $ increments along an arbitrary curve in the sy plane, and in par- 
ticular along the characteristic UC. 

When the shock waves or any other dissipative processes are absent from the region 
considered (which is assumed), the specific entropy s of the gas and its stagnation en- 
thalpy H z h + w2 / 2, where h is the specific enthalpy and w2 = us + v2 is 
the square of the velocity modulus, are conserved along each streamline. Therefore in 
the general case of an inhomogeneous (nonisentropic and nonisoenergetic) flow it is 
expedient to conduct the investigation using the variables $.V in which case the 
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equations describing the flow past the segment ab of the contour sought, have the form 

2h (P, P, $1 + w2 = 3~ Ws s (Pt P¶ s> = s (4+ 
Here p is the pressure, and the functions entering the last two relations are assumed 
known. These functions may have first order discontinuities in 9 , which correspond, in 
the flow plane, to the tangential discontinuities coinciding with the streamlines. In ge- 

neral, on passage through such discontinuities all parameters undergo a jump, with the 

exception of the pressure and the angle 6 sz arc& (v / u) formed by the velocity 

vector and the s-axis. In the following we shall limit ourselves to the case when the 
domain of definition of the segment a& bounded from the left and right by the charac- 
teristics ah and hb is entered by not more than one line of tangential discontinue. 
It is this situation that is depicted in Fig. 1, where the line of tangential discontinuity is 

the steamline dm. The jumps in the values of the Mach number &? = w i-n (where 

a = a (p, p, I$) is the speed of sound) and in the value of the Mach angle a = 

arcsin (1 / M) observed during the passage along dm, have the corresponding corners 
an the characteristics (ah is the last boundary characteristic of the initial fan), as shown 

in Fig.1. 

Let us formulate the variational problem, Under the above conditions we require to 

construct the generatrix ag, i.e. to determine the relationship z = E (g) , where 
0 ~2 E (9) < X, realizing the minimum wave drag “/,. The latter is given, with the 
accuracy to within the unessential term and multiplier, by 

p+ (1.3) 

Here integration is performed along the body contour along which the following condi- 
tion of no-flow holds 

It is expedient to assume that the parameters in (1.1) - (1.4) are dimensionless. If 
I*, We and p* are respectively the characteristic length, velocity and density, then we 

refer the quantities possessing the dimensions of length to I,, of velocity to w* , of 
density to p+ and of pressure to pewe2, the stream function to p*w*l*t+” and the 

wave drag to p*we21*ifv, 

2. We assume that the optimal config~ation sought has no internal corner points, 
i.e. is of the type depicted in Fig. 1. Then the problem can be solved, as in the case 
of absence of a contact discontinuity [l, ‘21, using the method of control contour. Taking 
the stream function I$ as the independent variable on UC, ah and cb and assuming that 
the value I&~ = $f at the point m is fixed while the variations 66 and 6w, by virtue 
of continuity of 6 and p), are connected by the relations 

68,, = 66,-, (!)w)m+ &urn+ = (pzu),_ 6w,_ 

where minus (plus) denotes the upper (lower) limiting values at the tangential discon- 
tinuity, we arrive at the following results. For the optimal contour ag , the following 
equality must hold on the characteristic hb (h is a constant which is the same on both 
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hm and mb): 
Ypw” tg a sir+@ = h 

This equation (with the point h suitably selected) and the equations 
(2.1) 

(2.2) 

which hold along any characteristic belonging to rhe second family, are together suffi- 

cient for inducting the characteristic hb. The ordinate of b either coincides with 

ye or (for y, > y,) is found from the Busemann condition 

(Pws tg a sin 26 ),, = 2 fp+ - p@) 12.3) 

At the first sight it appears that the relations (2.1) - (2.3) together with the arbitrari- 
ness in the choice of h, i.e. in the choice of intensity of the initial fan and position 

of h on its closing characteristic are sufficient to construct the optimal character- 
istic hb and then (having solved the Coursat problem) the contour ag satisfying all the 
conditions given, However this is not so, Indeed, since Eq. (2.1) containing the same 

single constant h must hold on hb on both sides of the point M, it follows, together 
with the fact that &J and 6 both are continuous at this point taken into account, that 
at m the following equation must hold 

A-l---o,==O 

(0 = (PW” tg a), i (PU” tg 01-)-I 

Since 0 contains, apart from the therm~ynamic parameters, only the velocity modulus, 

using the last relations of (1.2) we can show that w is a function of N,, N_, S,, S_ 
and pressure only (the definition of o clearly implies that in the absence of a tangen- 

tial discontinuity when H, = H_ and S, = S_, o = 1 for any p). Recalling that 

the limiting values of f$ and S on both sides of the tangential discontinuity coincide 

with the equivalent quantities on nc, i.e. that they are given, we see that in the gene- 
ral case (H, i; I$_ and S+ + s-1 the condition A = 0, even if it holds, can only 

do so when pmis a root of the equation 

0 (Ii,, K, s,, s-9 Pm) = f t2.4 

Thus, even when the above equation has positive real roots satisfying the flow scheme 
under consideration, the configuration depicted in Fig. 1 cannot be constructed in the 
general case. 

The physical meaning of the condition (2.4) is easily explained. Xt can be shown 
that the coefficient of reflection from the contact discontinui~ of the pressure pertur- 
bations arriving at uz along the characteristic km of the first family and reflected along 
the characteristic of the opposite family, is 

K = (1 - 0) / (l -!- 0) 

Consequently Eq. (2.4) is equivalent to the condition that the coefficient of reflection 
vanishes and this. as a rule, does not take place. 

The fact that for K # 0 the config~ation containing no internal corner points can- 
not bcoptimal, may be proved using an example proposed in [6] in the investigation 
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of a flow past bodies of approximately wedge shape. Repeating this procedure (see also 
[7]) we vary the contour without a corner at the point k only over the interval (yk - 
By) < y < (yk + Ay), where Ay is a small positive quantity. Within this interval we 

replace the initial contour (as shown in Fig, 2) by two rectilinear segments intersecting 

the initial contour at the interval boundaries, and each 
other at a point on the unvaried characteristic km the 

abscissa of which is zk + AyAc, where 5 = u / u and 
AC is of the same order of magnitude as Ay. Lineariz- 
ing the equations of motion relative to the original 
(nonuniform) stream, it can be shown that within the 
accuracy of order higher than that of AyAc, the pertur- 

B bations in p caused by the process of varying the con- 

tour performed above, vanish everywhere outside the 

strips of height Ay adjacent to the characteristics km 

Fig. 2 and m6. When the reflection coefficient is positive 
(K,.,, > 0) the pressure increases (decreases) in the reg- 

ions denoted in Fig. 2 by the plus (minus) signs. It can further be shown that the incre- 
ment in the value of :! caused by the variation of p on the altered segment of the con- 
tour has also a higher order of smallness than AyA& Thus if K, > 0 and @.b < 0, we 
are left only with the uncompensated negative increment in X of the order of Aybt;. 
When X, < 0, we obtain the same result with 65 < 0, which corresponds to an inden- 
tation near the point k. From this we see that for I$, # 0, the contour without a corner 

at the point k cannot be optimal. Moreover, the above analysis enables us to assert that 
when K, > 0 , the optimal configuration has a corner at the point indicated and an ex- 
pansion fan is formed in the flow past this corner, while for K,.,, < 0 we have a shock 

wave. Similar analysis can be performed in the case when the segment ak contains 

another one (kl in Fig. 1) or several points such, that the perturbations generated by 
deformation of the contour in their vicinity reflect alternately from the tangential dis- 

continuity and from the wall, to arrive at the point ET . Here it must be remembered 

that the pressure perturbation is reflected from the wall without change of sign. 

3. Our next investigation refers to the case when the optimal configuration demands 
that an expansion fan is generated by the flow at the corner point m (in accordance with 
what was said before, this can be expected when k’, > 0). We shall also limit ourselves 
to the situation in which the characteristic Lk belonging to the second family and arri- 

ving at k, intersects ah below the tangential dis- 
continuity, as shown in Fig. 3 (thin lines different 

from dm represent the characteristics), or at the 

point f. 
As we have already remarked, the presence of 

an internal corner makes it necessary to employ 
the general method of Lagrange multipliers. First 
we construct the following auxiliary functional 

Fig. 3 
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variable Lagrange multipliers and G is the region of flow (in the $y-plane) bounded 
by the contour of the body (the straight line Q = +a> and the characteristics ac and 
cb. By virtue of (1.2) and (1.4) we find, under the allowed variations, that when u and 

U, as wellas thedensity and pressure whichare,inaccordance with(l.2)allknown functions 
of U, u and I#, satisfy the equation; and the boundary conditions of the problem, then 

the first variations of 1 and of the optimized functional x , coincide. Moreover, acting 
in accordance with [3 - 5, 71 we obtain the equations and conditions of the “conjugated” 
problem which can be used to find the Lagrange multipliers in the subregion Go of G 
lying (in the ry-plane) to the right of ah and in particular on ab, as well as the neces- 

sary conditions for X to be a minimum, which determine the form of the optimal gene- 
ratrix. 

In the subregions of Go in which the multipliers p1 and ~2 are continuous, the latter 
must satisfy the following system of equations 

$- + YP ~+L_+-&c_~~O 

apI a2- ~7% apa yvpv -%- - - - - - - Yypa2z~2 aY 
u ap2 = o 
va ag 

When w > a , the system given above possesses two families of real characteristics 
which coincide with the characteristics of the equations of motion (1.2) and on which 

Rdpl r!z dp2 = 0 (R = Y’P~ J B, fi = l/W - 1) (3 *l) 

Here and in the following the upper (lower) sign denotes the characteristics of the first 
(second) family. The differentials dl~~ in (3.1) are taken along the characteristic. 

On the characteristics which lie in Go and represent the lines of discontinuity of 

Lagrange multipliers, the jumps in /Ai satisfy the equations 

R [y,lf 1~21 = 0 (3.2) 
where [piI is the difference in the values of pi before and after the discontinuity (in 
the direction of flow). The boundary conditions of the conjugated problem for pi are 
formulated at the wall ab and on the closing characteristic hb and have the form 

pi = 1 on ab, Ry, + pz = 0 on hb (3.3) 

Finally, the multiplier z on ak- and kb is determined in such a manner that z = p2. 
On the line of contact discontinuity fm the multipliers pi are continuous. On the 

other hand, during the passage across the tangential discontinuity the coefficients accom- 
panying pi in the second condition of (3.3) change at the point m . This implies that 
the characteristic km is a line of discontinuity of the Lagrange multipliers. The inten- 
sity of the discontinuity at the point m’ characterized e. g. by the jump [p2], is de- 
termined from (3.3) and (3.2) and is given by the formula 

Ipzlln = - Km~2,+ (3.4) 

Here and in the following the index minus (plus) accompanying pi denotes the values 
of /pi before (after) the corresponding line of discontinuity. If the reflection coefficient 
vanishes at the point m then, as we see from (3.4). the characteristic kmceases to be a 
line of discontinuity of the multipliers /.~i and this corresponds to the solution without 

internal corner points discussed earlier. 
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Use of the second condition of (3.3) enables us to integrate (3.1) which corresponds 
to the characteristic of the second family, and thus arrive at the formulas for pi on hb 
which are P1 = -CR-‘la t p2 = CR?% on hb (3.5) 

Here C is a constant which has different values on hm and mb , respectively. These 
values of c are defined from the values of ~1~~ and Psm_ computed in (3.5) and the 
values obtained in accordance with (3.3) and (3.4). Thus e. g. on mb , by virtue of 
(3.3) we have C = - Rb’lp. 

Taking into account the fact that the characteristics, i. e. the lines of discontinuity of 

the Lagrange multipliers, satisfy on each of their sides the corresponding differential rela- 
tion given in (3. l), we arrive in an analogous manner at the formulas 

b,] = [f-dx (R, 1 R)“t, Ip2] = Ip21n (R / R,)‘:t (34 

These formulas define [pi] at any point on the line of discontinuity in terms of R, i. e. 
in terms of y and the flow parameters at this point, as well as in terms of the intensity 

of the jump in p1 and the value of R at any point n on the same characteristic. 
For an arbitrary (not necessary optimal) contour akb about which a flow takes place 

without formation of shock waves at G , the equations and boundary conditions (3-l)- 

(3.6) make it possible to solve the conjugate problem in G” and find, in particular, the 
values of the multipliers piat the contour akb. At the same time it can be shown that 
in the case depicted in Fig. 3 the characteristic lk represents another line of disconti- 

nuity in l,tI. Further, if the contour considered is optimal, then the multiplier ,p2 retains 
a constant value on each of its smooth segments 

p2=C1 onak, p2 = C2 on kb 

and the following conditions hold at the comer point k 

h‘+ 

E, = 
s 

{W, - 1) + cls - ~czK+> d_$ = 0 
k_ 

(3.7) 

(3.8) 

E2 = p2k+ - PLzk- = 0 

Here the integral at the point h_ is taken across the whole expansion fan and the lower 

minus (plus) sign denotes the parameters on the wall before (after) the corner. Compar- 
ing (3.7) and (3.5) we see that C2 = - C2 = - R,. In addition to satisfying (3.7) 

and (3.8), the optimal contour must satisfy another two conditions of optimality 

{Y”(pf--P)+C12(U/21)}b~0, PZb<’ (3.9) 

The first of these conditions (with the equality sign) serves to determine 9, and the 
second represents the condition that the butt end bg is the segment of the edge extre- 
mum. From (3.7). with the expression for C, taken into account, it follows that the 
condition always holds provided that vl, # 0 . The inequality in the first condition of 
(3.9) can only arise when y, = yg. 

Constructing the segments ak and kb of the optimal contour (with the angles by 
which the direction of the flow is changed at the points a and k , known) is equivalent 
to determining the “optimal” characteristics lk and nb. The passage to the character- 
istics indicated, i. e. the transfer of the corresponding conditions of optimality to these 
characteristics, can be realized due to the fact that in this case, just as in [7, 83, the 
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equations PI (4, y) = 1 and /& ($, y) zz con& represent the integral of (3.1) 
which yields a solution to the Cauchy problems in the triangles alk and knb with the 
initial conditions (3.3) and (3.7) on ak and kb. As the result, in the course of solving 

the conjugated problem the Lagrange multipliers need only be determined in the region 
~~~kl and the boundary conditions for pi are set on hn and kn. The conditions on ha 
follow directly from the previously formulated conditions on hb, and the conditions on 

kn assume the form 
p1 = 1, p2 = Cz on kn (3.10) 

The constant C, as well as the constant c from (3.5) on the segment mn are better 

expressed in the terms of the flow parameters at the point n. In accordance with (3.5) 
and (3.10) we have C 2; - Rnt!z and C, = - R,. 

Further, since p1 G 1 everywhere in the triangle knb, from (3.5) it follows that the 
quanti~ R remains constant on the segment nb , Taking into account the expression 
for R after the passage from* 8 and F; to w, 6 and a , we arrive at the condition (2.1) 

obtained with the help of the method of control contour. At the same time the first con- 
dition of (3.9) which serves to determine yb assumes, after substituting ps6, the form 

{P (P' - PI - P4b a 0 (3.11) 

In the case of equality (i.e. when I& > gg) this condition coincides with (2.3) which 
was also obtained using the method of control contour. The naturalness of coincidence 
of the conditions on nb and at the point b with the conditions obtained previously, is 

obvious. In fact, by virtue of the supersonic character of the flow the segment kb, as 
well as any end part of the body, must be optimal. Since the tangential discontinuity 

passes above the point n, it can also be constructed using the method of control contour. 
The condition determining the optimal distribution of parameters on the characteristic 

Zk is obtained from (3.2) in the similar manner and is formulated as the following equa- 

lity 
Es s R (pl - 1) + pz - C, = 0 on Zk (3.12) 

which is equivalent to the condition (3.7) on ak. The Lagrange multipliers in (3.12) are 

taken from the right of the characteristic Zk which represents the line of discontinuity 
of pi. The last quantities to be determined in the course of solution of the conjugate 

problem are ail and ~2~. The constant C, is then chosen such, that Esl = 0. 
We can deal in the similar manner with the variational problem of constructing the 

generatrix of the supersonic part of a Lava1 nozzle realizing the maximum thrust. 
Figures corresponding to this problem can be obtained from Figs. 1 - 3 by mirror reflec- 
tion (without changing the orientation of the coordinate system) in a straight line y = 
const > YC. Since in this case the characteristics of the first family become the char- 
acteristics of the second family (and vice versa), certain of the relations obtained above 
are modified. Thus, Eqs. (24 and the second equations in (3.3) and (3.5) which hold 
on the closing characteristic, must be replaced by 
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respectively. The conditions (2.3) and (3.11) at the point b now become 

(p”’ @ CL sin 2@b = 2 (Pb - P+h {p (P’ - p) + pUV}b a o 

and Eq. (3.12) defining the characteristic lk becomes 

Es E R (~1 - 1) - P2 + C, = 0 on lk 

The expressions for the constant C, in (3.7) and (3.10) are also changed to C2 = C2 = 
Rb and Cz = R,, respectively. Moreover, in the inner problem it is expedient to assume 
that qa = 1, and choose the normalizing constant c for the stream function in (1.1) so, 
that the value of I# on the axis of symmetry becomes zero when & = 1 . After this it 
only remains to replace the expressions of the type “minimum drag” with the words 
“maximum thrust” to make all previous statements referring to the outer problem, valid 

for a nozzle. 

4. Let us consider a special case of a plane flow (Y = 0), in which H ($) and 
8 (9) are piecewise constant functions which undergo a discontinuity only when 9 = 
+)d and where the direction of the velocity vector on the segment dc,of the initial 
characteristic does not vary (6 z 6 d). The remaining gas parameters are constant on 

dc and the segment itself is a straight line. For this reason we have, in the quadrangle 
d&f of the initial fan, a Prandtl-Meyer flow with rectilinear characteristics of the first 
family. 

Let us now assume that 6 on the optimal characteristic Zk determining the form of 

the initial segment of the generatrix, is also constant (*) . Then the characteristics indi- 
cated will be rectilinear and so will be, in the quadrangle Zfik , all characteristics of 

the same family as lk. Since in the present case p G pf and 6 s 6, on fi and fh, 
the segment fq of the line of tangential discontinuity is found, in accordance with the 
equation of flow, to be rectilinear, The same is true of the segments of all the charac- 
teristics of the second family lying in fheqif on one side of the tangential discontinu- 
ity (on fq the characteristics of either family have a corner). 

Considering further the conjugate problem for the Lagrange multipliers we can show 
that the latter, under the assumption made above. are constant on each characteristic of 
the second family lfheqkl and consequently,also on &. From this it is clear that in the prob- 

lem in question the constant distribution of 6 and other parameters on the characteristic 

A satisfies (by virtue of the choice of Cl) the condition (3.12), i. e. it is optimal. 
This circumstance appreciably simplifies the problem of constructing the optimal 

configuration by narrowing the region in which the conjugate problem must be solved, 

to the second expansion fan kqenk. Moreover in this case the solution of the inverse 
problem in which instead of x and ps we specify the intensity of the initial fan and 
the position of the point l on uf, the iterative procedure for numerical solution of the 
problem representing the most time-consuming part of the corresponding algorithm, 
here involves the determination of two quantities only, the corner angle on the wall at 

l ) We note that in the present case this, by virtue of (2.1 
place on the segment nb of the closing characteristic an d 

and (2.2), certainly takes 
on all characteristics of the 

second family, in the triangle knb. In this case of a plane irrotational flow, all charac- 
teristics of the second family are rectilinear in the domain of definition ahba of the 
contour sought. 
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the point k and the ordinate (or abscissa) of the point, e on ke. These are obtained from 
the requirement that the condition (3.8) holds during the process of repeated solution of 
the direct (to compute the flow parameters) and the conjugate( to obtain pi) problems in 
kqenk. In the general case, however, the numerical algorithm must include an additional 

procedure for computing the optimal distribution of 9 = 6 ($) on Zk. 
If sq is a characteristic of the second family, then the solution obtained above rem- 

ains valid even when the assumptions formulated in Sect. 4 concerning the character of 
the flow on dc hold only on the segment ds . The flow is arbitrary on SC (in the case 
of rotational flow we additionally require that $h does not exceed $ on SC ). We also 
note that in the solution considered the Prandtl-Meyer flow with linear characteristics 
of the first family is also realized in the rectangle iqpr and, within this rectangle the 
multipliers /Q remain constant along the rectilinear characteristics.If we include in the 

previous assumptions an additional one, that ti G const also on ad, then the triangles 
ado and kit are also simple wave regions. In the latter the Lagrange multipliers are 
constant on the characteristics of the first family. 

6. Before passing to the examples illustrating the computations carried out for the 
configurations of the type shown in Sect.4, we shall give the results of an analysis of the 

case of a weak tangential discontinuity. We note that this analysis is valid for any inci- 

dent flow for which a continuous solution described by (2.1) can be constructed in the 
absence of a tangential discontinuity. 

Thus let the parameters of a continuous (“initial”) free supersonic stream and other 

conditions of the problem be known. together with the quantity qd and the jumps in the 
values of H and s which occur when 4 = qd, the latter being of the order of E and 
defining a “perturbed” flow with a tangential discontinuity. It is c6nvenient to assume 
that the parameters of the initial and the perturbed flow coincide on ad and the appear- 
ance of the tangential discontinuity modifies the flow on dc If, as before, Icm is the 
characteristic of the first family which arrives at the point m of the closing character- 

istic when 9, = I#~, then the parturbation of the free stream leads to the appearance 
of a corner at k and causes deformation of the segments ak and kb of the initial opti- 
mal contour. The purpose of the-present analysis is to obtain formulas for computing 

the corner angle at k, i. e. the difference ( ck+ - ck_) as well as the increments A cl 
and A c2 corresponding to the parts of the corner before and after the characteristic km 
respectively. The formulas given above are accurate up to and including E and are 

valid for the extreme right inner corner point when any number of such points exist 
(i. e. in the cases depicted on both, Fig. 3 and Fig. 1). 

It is natural to expect that the introduction of a weak tangential discontinuity does 
not significantly distort the initial optimal contour constructed with E = 0. We there- 
fore assume that A &, A c2 and Sk+ - ck_ = A & + A & are all of order of E. 
The subsequent investigation is based on the equations and conditions obtained above, 
and includes the following stages. First we construct, in’ the usual manner, the optimal 
contour and the complete flow in ahb corresponding to E = 0, i.e. to a continuous 
flow at ac. This, with I& given, enables us to find the unperturbed characteristic km 
and the quantity 

A= -ddInR/dc 

where d In R is the differential computed on the characteristic mb and corresponding 
to the increment dc at the point k. Both increments are determined at the known 
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characteristic km for the flow in the expansion fan which appears to the right of km 
when a corner is introduced at the point k. 

We know [I, 2, 91 that for any flow, a derivative of the type A can be expressed in 
terms of the distribution of the gas parameters on km. In the case of a plane ‘&rotational 
flow when the initial flow is a simple wave, the formula for A becomes appreciably 

simplified and can be obtained from the expression for R and the condition of compa- 

tibility appearing in (2.2). In the general case A can always be defined numerically, 
using the method of characteristics to compute that characterisric of the fan which is 

adjacent to km, and utilizing the ratio of the increments of In R and 5 at the corres- 
ponding points of the initial and the computed characteristic. 

Making further use of the quantity A together with the relations (3.5) on hb and 
(3.4) at the point, m, we arrive at the formulas which yield, with the accuracy up to E , 
the values of p1 and I,L~ OR the segments mn and me of the closing characteristic (unlike 
before, here and in the following we consider the characteristics of the perturbed flow). 
As the width of the fan kqemnk and, consequently, of its parts lying on the left and 

right of km are of order of a, we use Eqs. (3.1) defining the characteristics for /.Li as 
well as the conditions p1 G 1 and p2 5 pak+ on kn and the formulas (3.6) at the 
discontinuity km, we perform the necessary integration to define l~,i in 5 at the point 

k , making use of the already obtained distributions of pi on mn and me, The relations 

indicated have, with the accuracy of up to and including a , the form 

(!h - 1) (Rk I Rnp = 0.5A (5 - 5k+) + yR?n 

(P2 - ~2k+) (%$#' = 0.5A (5 - tk+) + ‘&I 

where y = 0 (1) to the right (left) of km,while the quantities R, and Rk are com- 
puted for an unperturbed optimal profile. 

Inserting these distributions into the conditions (3.8) and performing the integration 
with respect to 5 in the first of the resulting expressions we obtain two expressions for 

A cl, and A & which on solving yield 

Ac,=A$J2=&,fA (5.1) 
From the above formula it follows that for small values of the coefficient of reflection 

the corner angle in the contour is in fact proportional to K, N e, and the characteris- 
tic kmdivides the contour in half. When A is negative (this occurs in all cases consid- 
ered here and apparently, always), the above argument together with the inference made 
previously imply that for the positive coefficients of reflection at the point m, the flow 

past the corner at k forming an expansion fan just as we assumed in our previous analysis, 
It is obvious that the case K, < 0 cannot be analized in the same manner. 

8. The linear analysis given in Sect. 5 can only be used when K,are small. When 
the coefficients of reflection are moderate or large (by definition 1 K: 1 < -I) , the re- 
quired information can only be obtained by numerical method . The most interesting 
problems here are the following: (I) what is the magnitude of the corner angle at k and 
(2) how much smaller is the wave drag of the optimal contour, than the wave drag of a 
contour constructed by any other (simpler) method. With regard to the first problem we 
note that the corner angles at the internal points of the head-end contours of bodies with 
minimal wave drag, the flow past accompanied by an attached shock wave, are found to 
be very small in all cases investigated [lo, xl], 
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To obtain the answer to the above questions we have derived the necessary computer 
algorithms and used them to construct the optimal contours discussed in Sect.4. The 
whole free stream was assumed parallel to the x-axis, i. e. 6 s 0 on UC, and the 
remaining gas parameters of this flow were assumed constant on either side of the tan- 
gential discontinui~. A flow of perfect gas was considered, with the adiabatic index 
1~ = 1.4 for the whole stream. The inverse problem was solved in which, as we said 
before, instead of specifying the maximum allowed length X and pi, we specified the 
intensity of the comer at the initial point coincident with coordinate origin (Y~=,z~,=,o) 

and the position of the point d on the characteristic uh.For this reason, instead of the 
length of the body, we used the ordinate of the line of tangential discontinuity in the 

free stream (yd = 1) as the characteristic dimension (I,) . The critical velocity and 
density of the unperturbed flow in a layer adjacent to the wall were used as the charac- 
teristic velocity and density wy: and p.+. Therefore the ratio p / px used in place of 
entropy. and the stagnation enthalpy, are 

Here the subscripts oo and a plus (minus) are assigned to the parameters of the free 

stream past the wall (above the tangential discontinuity). 
The computations were performed using the method of characteristics and included 

solving the direct problem to obtain the flow parameters, and the conjugate problem to 
obtain the Lagrange multipliers. Solution of the direct problem involves a successive 
determination of the initial fan adchfa , the region klfheqk and of the second fan 
kqemnk. The flow in klfhegk is computed along the characteristic ah obtained in the 

process of constructing the initial fan, and along the rectilinear characteristic Zk the 

parameters on which coincide. in the present case, with their values at the point 1. The 
conjugate problem presupposes that the equations of flow and the equations for pi are 
integrated only in the second fan (the computation of the first two regions is only ten- 
tative, since the position of the point, c and, co~equently, the whole characteristic Le , 
are not known in advance and are only found in the course of solution). In the conjugate 
problem the computations are performed in the reverse direction (from the characteris- 

tic kn). First a new characteristic of the first family is constructed, beginning at the 
point k . Then the parameters on this characteristic and on the previous characteristic 
together with the boundary conditions for pi on ne are used to find the Lagrange multi- 
pliers, Unlike the flow parameters, here the multipliers lo at the point k are the last 
to be determined on each characteristic of the fan. In computing the multipliers we 
use the equations of characteristics (3.1) with the conditions on kn and ne , and the 
relations at the discontinuity km. 

In the process of finding pi at a corner point (on various characteristics of the fan) 
we compute the integral in (3.8). This enables us, after finding the solution to the con- 
jugate problem, to determine the left hand sides of both conditions in (3.8), the second 
one of them being rewritten for convenience in the form 

E, zz Rh_ (f-‘ih_ - 1) -t @Lzh. - l&?C+) 

where the subscript k with the plus sign omitted denotes the quantities at the point k 
on the characteristic kr~. 

In the present case (and always, when the characteristic lk is fixed) the left hand 
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parts of the equations examined, i. e. E, and E, , are functions of A& and Act only, 
and they are different from zero when the choice of the indicated increments is not opti- 

mal (the fact that E, and ELI are not explicitly related to A& and A& but are obtained 
in the course of computation, is unessential). The optimal values of A& are the roots 

of the equations 

which, as in [ 10, 111, were obtained in the course of the iterative process using the New- 
ton’s method. Each iteration here includes the determination of partial derivatives of 

E, with respect to AL1 and AC2 and requires a three-stage solution of the direct and 
conjugate problem for the second fan. The initial approximation for A& was either 
obtained using the formula (5.1) of the linear theory, or was taken from a previously 
computed version. In all cases considered here the number of iterations guaranteeing the 
correctness of all significant figures in the results given below, did not exceed four. 

After completing the iterations over Aci we project, from the point n with $=Qnr an 
optimal characteristic nb which is in this case rectilinear (the parameters on nt are 

constant and equal to those at n). The coordinates of the point 6 as well as X = lb are 

found, along vb = I$~, on this characteristic. The counter pressure p+ is found from the 
Busemann condition (2.3). If the value p+ > 0 is obtained, then for the given free 

stream and for X and P+ which have been determined and can therefore be now assumed 

given, the configuration constructed is optimal for any yg < yb. The segments ak and 
kb of the generatrix nb are subsequently obtained as the streamlines, with 9 = q)a , from 

the solution of two Goursat problems in which the characteristics al , Zk , kn and nb , 
respectively, are known. The wave drag Xnb of the segments ak and kb can be found 
either by direct integrationalong the contour ab, or (prior to constructing the segments 
ak and kb) using the momentum flows across the segments al, lk, /in and nb of the 
known characteristics. The difference in the values obtained by each method is usually 
employed in assessing the accuracy of the computations. 

After constructing each optimal configuration we set up, for comparison, a nonoptimal 
contour corresponding to the same free stream with given (identical to those already 
obtained) values of X and p+. The nonoptimal contours are chosen such, that the clos- 
ing characteristics hobo of their domain of definition satisfy the condition (2.1) with a 
separate value of the constant h on each segment, horn” and mob”. On horn0 the constant 

L is equal to the left-hand part of (2.1) at the point ho and on mob”, to the same expres- 
sion at rn+O. The parameters at m$ are found from the parameters at m_“ by virtue of 
the conditions of continuity at p and 5 on the tangential discontinuity. The intensity 
of the initial fan and the position of the point ho on its closing characteristic are cho- 
sen so, that the contour constructed is of the prescribed length X and the Busemann con- 
dition (2.3) holds at its end point b” when a known pressure p+ acts on its butt end. It 
can be shown that in this case the method of constructing a comparison contour ensures 
the optimality not of the contour ab” as a whole, but of each of its segments ak’ and 
k”b” separately. 

In the linear analysis of the conjugate problem carried out in Sect. 5 the linearization 
was performed with respect to the solution corresponding to a profile which becomes 
optimal when the free stream contains no tangential discontinuity. A different approach 
can also be adopted, in which the role of the initial flow is played by a flow past a 
smooth, nonoptimal contour, corresponding to the previously constructed characteristic 
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hobo. In this case the initial (“unperturbed”) flow already contains the tangential dis- 
continuity. In spite of this discrepancy, the final result obtained in this case coincides 

with the form&( 5.1) in which the quantity A can now be computed on either side of the 
characteristic k”d of the initial flow. It was precisely in this manner that the corner 

angles given below for comparison were computed from (5.1). with A taken as equal 
to half of the sum of the corresponding quantities in m_’ and m+‘. 

Several optimal contours were computed and their characteristics are given in Tablel. 

x= 3.30 3.45 5.10 7.61 ii.3 
pf.lO = 3.87 3.71 2.01 0.81 0.12 

xlr = 1.41 1.41 1.91 2.60 3.08 
-y,.io = 0 :70 0.68 1.85 3.43 5.04 

-?ib = 0.17 o.i9 0.58 1.39 3.09 
--r/i, = 0.19 0.22 0.67 1.66 4.00 

--&*102 = 5 .oo 5.00 10.0 i5.0 19.0 
-&_*102 = 5 .oo 3.40 6.08 7.40 9.10 
-&+.*i02 = 5.12 7.39 1.51 2.35 3.59 
-&)‘W = 5.13 4.59 9.55 1.51 2.42 

-A51.10 = 0.06 0.22 0.50 0.89 1.39 
-At;z.iO = 0.06 0.18 0.40 0.72 1.28 
-A<,+10 = 0.07 0.10 0.20 0.31 0.41 
--&Pio= = 6.16 9.05 19.4 32.7 50.8 
-+?&.lO~= 5.0’2 3.47 7.08 ii.6 20.5 

-X.iOZ zz 6.56 10.0 22.2 35.7 46.9 
AX.102 = 0.95 1.88 3.18 4.57 3.45 

Table 1 

Each column gives, in addition to the quantities pertaining to the optimal contour, 
some of the, geometrical characteristics of the smooth comparison contour, the quantity 

A& which is found from the formula (5.1) of the linear theory and the gain in X due 
to the optimal profiling. The latter is given by the relative increment AX s (X-X“) / X0, 

where X” is the wave drag of the nonoptimal configuration (by definition, X and X’ are 
negative). The ordinates yrr and g4 o of the.end points of the optimal and the comparison 

Fig, 4 Fig. 5 
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contour, respectively, were assumed both equal to ybO. The parameters of the free stream 
in the case of the first contour were: S- = 7.143, H_ = 30, M_ = 2.73, M, = 1.2 and 

p+ = 0.556, which gives K, = 0.15. For the remaining four contours in the same unper- 
turbed stream the values obtained were : 0.143, 12, 8.57, 1.1. 0,633 and 0.53, respec- 
tively. 

Figure 4 shows the distributions of 5 along three of the contours constructed. Here 
x0 = x f X and the numbers accompanying the curves refer to the contours. An analog- 

ous curve for the fifth optimal contour, and its form, i. e. the relationship connecting 
y0 = ~1 I X and 2, are shown in Fig. 5, which also depicts the distribution of 5 and the 
smooth contour itself, corresponding to the same X, p” and the free stream as the con- 
tour Nn5. In contrast to the remaining smooth contours computed for comparison purpo- 
ses, the flow past the smooth contour shown in Fig, 5 is such, that the closing character- 
istic of its domain of definition does not intersect the tangential dis~ntin~~. Since 
all conditions of optimality hold for such smooth contour, the variational problem con- 

sidered here has two solutions (see also Sect. 7). Comparing the values of X achieved 

by the contours constructed shows that in the example given above the contour with an 
internal corner point is superior to the smooth optimal contour. 

The results given above show, that in the present problem (in contrast to the situation 
observed for the bow parts of the bodies with minimum drag [lo, Xl]) the corner at k 
is of the same order, or even exceeds, that at the initial point, i. e. c,. We note also 
that despite the fact that A& and A& are different from A &, the ratio A& I A& 
is, in all cases, nearly equal to unity, as predicted by the linear theory. 

7. In conclusion we shall dwell on two problems which are interesting in their own 
right. First we shall follow the evolution of the optimal configuration when X is varied 
over the range of all possible values. To do this we fix all conditions of the problem 
except X, i.e. except the free stream and p+, and vary X step by step, beginning from 
zero and gradually increasing its value. Since for sufficiently small X, the closing 
characteristic hb lies completely between the tangential discontinue and the wall, 
therefore the usual configuration containing no internal comer points, is an optimal one. 

As X is increased, the point h recedes from the point a and at a certain instant (when 
X = X, where Xi is a function of p+ and of the parameters of the free stream) it 

becomes possible to construct an optimal configuration of the type investigated above. 

Since at the point k both conditions of (3.8) must hold and, as in the problem on the 
compound nozzle p], the appearance of the second corner takes place from “splitting” 

the initial fan into two fans (coinciding at the instant of splitting) of finite intensity, 

situated close to each other. We must stress that this occurs before the point h, corre-e 
sponding to a solution without a corner, reaches the tangential discontinuity. Therefore, 

over a cetrain range of maximum allowed lengths, two solutions exist (with and without 
a corner). It is not known in advance which of these solutions gives a smaller X , there- 
fore the optimal contotu must be chosen in each case (when two solutions exist) by com- 
paring the values of x just as it was done in Sect.6. 

Increasing the value of X further, we pass to the cases of two, three, etc. internal cor- 
ner points, each passage accompanied for the reasons given above by splitting of the fan 
at the point a and the appearance of a two-solution region. 

Let us consider the case of large x from another point of view. Let the length become 
such, that the situation depicted in Fig. 1 obtains for the smooth contour, Here a poly- 
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gonal curve composed of segments of the characteristics and terminating at the point b 
is reflected, within the domain of definition, from the tangential discontinuity, more than 
once. We shall restrict ourselves to the case when K > 0 at the points of reflection. 

We also know that the coefficient of reflection from the solid wall, introduced here in 
the analogous manner, is equal to unity. Therefore an analysis similar to that conducted 

in the final part of Sect. 2 shows that, when the smooth contour is deformed in the man- 
ner depicted in Fig. 2 at any of the points k, hl, . . . , then the value of x is reduced. 

This gives some grounds for the assumption that when K > o , the flow past all internal 
corners will lead to formation of an expansion fan at each corner. 

The second problem which is particularly interesting, concerns the deformation of the 
optimal contour, when the tangential discontinuity becomes continuously diffused. At 
the first glance, a corner appears at the point k because the coefficient of reflection at 

the point m is not zero. In the case of a smooth contour this leads, by virtue of the wn- 

ditions of the conjugate problem, to formation of a discontinuity in pt on the character- 
istic mk and consequently to the necessary appearance of a corner at the point k. It is 

the reflection of perturbations from the shock wave [lo, 111 and from the axis or plane 
of symmetry [ 12, 133 that is the basis of the mechanism of appearance of the internal 

corners in other problems (here of course the corners which are not connected with the 
process of specifying the coordinates of an internal point which was the case in [ 141, or 

with the different role played by the corresponding segments of the generatrix already 
in the initial functional, as it was in the case concerned with the point at which the ini- 
tial segment meets the end segment of a compound nozzle 173). If the tangential dis- 
continuity becomes diffused, i. e. if it is replaced by a narrow zone of continuous vari- 

ation of parameters and the reflecting surface dissapears, then the jump in the values of 
the Lagrange multipliers which occurred earlier on km, also becomes diffused between 

the characteristics k-m_ and k,m+. At the same time the pattern of reflection of per- 

turbations becomes more complex, and this makes it more difficult to analyse the situ- 
ation with help of a method which made it possible for the case of tangential disconti- 
nuity in Sect. 2 to establish without difficulty the necessity of the appearance of a cor- 
ner on the contour. However, we shall show below that’a weak blurring of the tangential 
discontinuity does not lead to disappearance (or to a weak “rounding”) of the internal 

corner point of the optimal contour. 
Let us assume the opposite, i. e. suppose that replacing the line of discontinuity dm 

by a narrow zone of continuous variation of parameters bounded by the streamlines 
d-m_ and d+m, causes a weak (or strong) rounding of the comer at the point k of the 
generatrix which is optimal when A = 0, where A is the width of the region of sharp 
variation of parameters. For any smooth generatrix a solution of the problem can be 
obtained using the method of control contour, i, e. reduces to the results of Sect. 2. Thus 

the optimal distribution of the parameters everywhere on hb , and in particular on m-m,, 
must satisfy the condition (2.1) with the constant h computed using the value of the 
left-hand side of (2.1) at the point h. However, as soon as the distribution of the para- 
meters on m-m, has been found in accordance with (2.1) and the equations of the 
characteristic of the second family, i. e. (2. Z), another question arises concerning the 
possibility of realizing the optimal distribution obtained by profiling the generatrix ab 
to the right of the characteristic k-m_, with the initial segment of the generatrix (ak_) 
fixed. We stress that the corresponding optimal distribution can be constructed for any 
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A and this includes A = 0. If K, > 0, then in the latter case the centered rarefaction 

wave from the characteristics of the first family with the center at the point m corres- 
ponds to the discontinuous distribution indicated. This possibility has not been discussed 
before, because such a flow cannot be realized in any manner by profiling a wall at a 
finite distance from the point m. 

An analogous situation arises when the discontinuity is weakly blurred. In fact, in this 
case the rate of variation of such parameters as p and 6 in the distribution obtained 

from (2.1) (i. e. the magnitude of the corresponding derivatives along m-m,) is deter- 
mined by A, becoming infinite when A = 0 , and the maximum rate of “dispersal” of 

P and 6 in an actual flow occurring, as we know [l, 2. 91, at the corner k of the con- 
tour ab , is always finite. Consequently, for sufficiently small L\ , the continuous distri- 

bution of (2.1) which follows from the assumption that the corner point has disappeared, 
cannot be realized and therefore the optimal contour must have a corner at k. Thus in 
the present case the necessity of introducing a corner is dictated by the impossibility of 
constructing a smooth optimal generatrix. 

It is reasonable to expect that weak blurring of the tangential discontinuity will cause 

a small deformation of the optimal configuration constructed for A = 0 with compul- 

sory retention of a corner at the point k. However, for the above assertion to be true it 
is necessary that the blurring of the discontinuity dm must not appreciably affect the 

flow parameters and the Lagrange multipliers anywhere outside the narrow zones of 

width of the order of A . When the latter zones are intersected, the relations which are 
valid for A = 0 , must hold at the corresponding discontinuities. This requirement is 
definitely fulfilled for the gas parameters. For the Lagrange multipliers the problem is 
more complicated. On one hand, on passage through the narrow zones of sharp variation 
of pi bounded by the characteristics of the same kind, the relations (3.2) for [pi] still 
hold in the regions of smooth variation of the flow parameters (now with the accuracy 

of up to A) . The latter can be proved by integrating, across the region indicated, the 
equation from (3.1) corresponding to the characteristic of the opposite family and deter- 
mining [pi] as the difference in the values of pci on both sides of the zone in question. 

On the other hand, as soon as the distribution of parameters on the closing character- 
istic ceases to be discontinuous, formulas (3.5) for pi become valid everywhere on hb 

and (which is particularly important) the constant L’ assumes a single value (instead of 
different values on hm_ and m, b which occurs when A -= 0) . From this it is clear 
that the distributions of p1 and pa on the segment hm_ of the closing characteristic dif- 
fer, for any A =+ 0, by amounts of the order of unity, from the distributions obtained for 

A = 0. It would seem that this, in turn, must lead to vastly different values of p-Li over 
the whole region afhm_ka, i. e. to violation of the requirement formulated above which 
is necessary for the continuous deformation of the optimal contour at small A. In fact, 

none of this takes place. A more detailed analysis shows, at small A , another narrow 
region of sharp variation of pLi. This region is adjacent to the segment hm_ of the closing 
characteristic and is bounded from the left by the characteristic horn of the second 
family. 

In Fig. 6, where f-m_ and f+m+ are the streamlines bounding the region of blurred 
tangential discontinuity, the zones of sharp variation of /-Li are represented by the dense 
network of characteristics of the corresponding family. In the triangle mm-h_ the vari- 
ations in pi along the characteristics of the second family diminish on approaching 
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h_.m and become of the order of A on h-m. The existence of this region ensures that 
on horn in contrast to hm_ , the values of the multipliers pi differ from those obtained 
for A = 0 on hm_ by amounts of the order of A. This secures the continuous deform- 
ation of the optimal configuration when the tangential discontinuity is weakly blurred. 

Fig. 6 Fig. I 

All the above mentioned points, and in particular the presence in the domain of defi- 
nition of the contour ab of zones of sharp variation of pi, must be taken into account 
when performing numerical solution of the problem under consideration. We note, by 
the way, that since the discontinuity in ILL on the characteristic lk is caused by the 
presence of a corner in the contour at the point k, it does not become blurred when 

A+=O. 
The configuration discussed above is realized only when Km > 0, therefore it is im- 

portant to know the region of the flow parameters, for which the above condition in fact 
holds. It can be shown that for a perfect gas (when x- = x+) 

where M_ and M, are taken at the point in question on the tangential discontinuity. 
The results of computing K = K (:%I_, M,) are shown in Fig. 7. The curves 1-G cor- 
respond to the following values of 

M, : vF(I’F), 4 (1.0328), 8 (i.O079), 16 (1.002), 24 (I.0009) and 40 (1.0003). 

respectively. The appearance of two values is explained by the fact that each curve 
corresponding to M, = A also corresponds to M+-A/I/AZ--l. In accordance with the 
expression for K and GI the coefficient of reflection vanishes when M_ = M, and when 

--____ 
.?I_ m: ‘II., / 1/M+Z - 1. For a fixed M, # 1/F this gives two points of intersection of 
the curve R = K (M_) with the abscissa. 

The authors express their gratitude to A, V. Shipilin for valuable advice concerning 
the setting up of the iterative procedure and to T. N. Vishnevetskaia and L. S. Shcheglova 
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